October 6, 2022

Laser-induced thermal source for cold atoms

  • 1.

    Loo, F. et al. Investigations of a two-level atom in a magneto-optical trap using magnesium. J. Opt. B Quantum Semiclass. Opt. 6, 81 (2003).

    ADS 
    Article 

    Google Scholar
     

  • 2.

    Grünert, J. & Hemmerich, A. Sub-Doppler magneto-optical trap for calcium. Phys. Rev. A 65, 041401 (2002).

    ADS 
    Article 

    Google Scholar
     

  • 3.

    Katori, H., Ido, T., Isoya, Y. & Kuwata-Gonokami, M. Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature. Phys. Rev. Lett. 82, 1116 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 4.

    Barbiero, M. et al. Sideband-enhanced cold atomic source for optical clocks. Phys. Rev. Appl. 13, 014013 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 5.

    De, S., Dammalapati, U., Jungmann, K. & Willmann, L. Magneto-optical trapping of barium. Phys. Rev. A 79, 041402 (2009).

    ADS 
    Article 

    Google Scholar
     

  • 6.

    Guest, J. et al. Laser trapping of Ra 225 and Ra 226 with repumping by room-temperature blackbody radiation. Phys. Rev. Lett. 98, 093001 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 7.

    Inoue, R., Miyazawa, Y. & Kozuma, M. Magneto-optical trapping of optically pumped metastable europium. Phys. Rev. A 97, 061607 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 8.

    Miyazawa, Y., Inoue, R., Matsui, H., Takanashi, K. & Kozuma, M. Narrow-line magneto-optical trap for europium. Phys. Rev. A 103, 053122 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 9.

    Youn, S. H., Lu, M., Ray, U. & Lev, B. L. Dysprosium magneto-optical traps.. Phys. Rev. A 82, 043425 (2010).

    ADS 
    Article 

    Google Scholar
     

  • 10.

    Miao, J., Hostetter, J., Stratis, G. & Saffman, M. Magneto-optical trapping of holmium atoms. Phys. Rev. A 89, 041401 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 11.

    Ilzhöfer, P. et al. Two-species five-beam magneto-optical trap for erbium and dysprosium. Phys. Rev. A 97, 023633 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 12.

    Golovizin, A. et al. Inner-shell clock transition in atomic thulium with a small blackbody radiation shift. Nat. Commun. 10, 1–8 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Maruyama, R. et al. Investigation of sub-Doppler cooling in an ytterbium magneto-optical trap. Phys. Rev. A 68, 011403 (2003).

    ADS 
    Article 

    Google Scholar
     

  • 14.

    Bradley, C., McClelland, J. J., Anderson, W. & Celotta, R. Magneto-optical trapping of chromium atoms. Phys. Rev. A 61, 053407 (2000).

    ADS 
    Article 

    Google Scholar
     

  • 15.

    Beaufils, Q. et al. All-optical production of chromium Bose–Einstein condensates. Phys. Rev. A 77, 061601 (2008).

    ADS 
    Article 

    Google Scholar
     

  • 16.

    Yang, T. et al. A high flux source of cold strontium atoms. Eur. Phys. J. D 69, 1–12 (2015).

    Article 

    Google Scholar
     

  • 17.

    Poli, N. et al. A transportable strontium optical lattice clock. Appl. Phys. B 117, 1107–1116 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 18.

    Yasuda, M. et al. Laser-controlled cold ytterbium atom source for transportable optical clocks. J. Phys. Soc. Jpn. 86, 125001 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 19.

    Grotti, J. et al. Geodesy and metrology with a transportable optical clock. Nat. Phys. 14, 437–441 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Takamoto, M. et al. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photon. 14, 411–415 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 21.

    Chu, S., Hollberg, L., Bjorkholm, J. E., Cable, A. & Ashkin, A. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett. 55, 48 (1985).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 22.

    Chu, S., Bjorkholm, J., Ashkin, A. & Cable, A. Experimental observation of optically trapped atoms. Phys. Rev. Lett. 57, 314 (1986).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 23.

    Kim, J. et al. Buffer-gas loading and magnetic trapping of atomic europium. Phys. Rev. Lett. 78, 3665 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 24.

    Hemmerling, B., Drayna, G. K., Chae, E., Ravi, A. & Doyle, J. M. Buffer gas loaded magneto-optical traps for Yb, Tm, Er and Ho. New J. Phys. 16, 063070 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 25.

    Leibrandt, D. R. et al. Laser ablation loading of a surface-electrode ion trap. Phys. Rev. A 76, 055403 (2007).

    ADS 
    Article 

    Google Scholar
     

  • 26.

    Zimmermann, K., Okhapkin, M. V., Herrera-Sancho, O. A. & Peik, E. Laser ablation loading of a radiofrequency ion trap. Appl. Phys. B 107, 883–889 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 27.

    Olmschenk, S. & Becker, P. Laser ablation production of Ba, Ca, Dy, Er, La, Lu, and Yb ions. Appl. Phys. B 123, 99 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 28.

    Vrijsen, G., Aikyo, Y., Spivey, R. F., Inlek, I. V. & Kim, J. Efficient isotope-selective pulsed laser ablation loading of 174Yb(^+) ions in a surface electrode trap. Opt. Express 27, 33907–33914 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 29.

    Osada, A. & Noguchi, A. Deterministic loading of a single strontium ion into a surface electrode trap using pulsed laser ablation. arXiv preprint arXiv:2109.04965 (2021).

  • 30.

    Tarallo, M. G., Iwata, G. Z. & Zelevinsky, T. Bah molecular spectroscopy with relevance to laser cooling. Phys. Rev. A 93, 032509 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 31.

    Baum, L. et al. 1D magneto-optical trap of polyatomic molecules. Phys. Rev. Lett. 124, 133201 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 32.

    Mitra, D. et al. Direct laser cooling of a symmetric top molecule. Science 369, 1366–1369 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 33.

    Kock, O. et al. Laser controlled atom source for optical clocks. Sci. Rep. 6, 1–6 (2016).

    Article 

    Google Scholar
     

  • 34.

    Chichkov, B. N., Momma, C., Nolte, S., von Alvensleben, F. & Tünnermann, A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109–115 (1996).

    ADS 
    Article 

    Google Scholar
     

  • 35.

    Lamporesi, G., Donadello, S., Serafini, S. & Ferrari, G. Compact high-flux source of cold sodium atoms. Rev. Sci. Instrum. 84, 063102 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 36.

    Cheiney, P. et al. Zeeman slowers made simple with permanent magnets in a Halbach configuration. arXiv preprint arXiv:1101.3243 (2011).

  • 37.

    Saffman, M. Quantum computing with atomic qubits and Rydberg interactions: Progress and challenges. J. Phys. B At. Mol. Opt. Phys. 49, 202001 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 38.

    Cohen, S. R. & Thompson, J. D. Quantum computing with circular Rydberg atoms. arXiv preprint arXiv:2103.12744 (2021).

  • 39.

    Young, A. W. et al. Half-minute-scale atomic coherence and high relative stability in a tweezer clock. Nature 588, 408–413 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • https://www.nature.com/articles/s41598-021-04697-4