Loo, F. et al. Investigations of a two-level atom in a magneto-optical trap using magnesium. J. Opt. B Quantum Semiclass. Opt. 6, 81 (2003).
Grünert, J. & Hemmerich, A. Sub-Doppler magneto-optical trap for calcium. Phys. Rev. A 65, 041401 (2002).
Katori, H., Ido, T., Isoya, Y. & Kuwata-Gonokami, M. Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature. Phys. Rev. Lett. 82, 1116 (1999).
Barbiero, M. et al. Sideband-enhanced cold atomic source for optical clocks. Phys. Rev. Appl. 13, 014013 (2020).
De, S., Dammalapati, U., Jungmann, K. & Willmann, L. Magneto-optical trapping of barium. Phys. Rev. A 79, 041402 (2009).
Guest, J. et al. Laser trapping of Ra 225 and Ra 226 with repumping by room-temperature blackbody radiation. Phys. Rev. Lett. 98, 093001 (2007).
Inoue, R., Miyazawa, Y. & Kozuma, M. Magneto-optical trapping of optically pumped metastable europium. Phys. Rev. A 97, 061607 (2018).
Miyazawa, Y., Inoue, R., Matsui, H., Takanashi, K. & Kozuma, M. Narrow-line magneto-optical trap for europium. Phys. Rev. A 103, 053122 (2021).
Youn, S. H., Lu, M., Ray, U. & Lev, B. L. Dysprosium magneto-optical traps.. Phys. Rev. A 82, 043425 (2010).
Miao, J., Hostetter, J., Stratis, G. & Saffman, M. Magneto-optical trapping of holmium atoms. Phys. Rev. A 89, 041401 (2014).
Ilzhöfer, P. et al. Two-species five-beam magneto-optical trap for erbium and dysprosium. Phys. Rev. A 97, 023633 (2018).
Golovizin, A. et al. Inner-shell clock transition in atomic thulium with a small blackbody radiation shift. Nat. Commun. 10, 1–8 (2019).
Maruyama, R. et al. Investigation of sub-Doppler cooling in an ytterbium magneto-optical trap. Phys. Rev. A 68, 011403 (2003).
Bradley, C., McClelland, J. J., Anderson, W. & Celotta, R. Magneto-optical trapping of chromium atoms. Phys. Rev. A 61, 053407 (2000).
Beaufils, Q. et al. All-optical production of chromium Bose–Einstein condensates. Phys. Rev. A 77, 061601 (2008).
Yang, T. et al. A high flux source of cold strontium atoms. Eur. Phys. J. D 69, 1–12 (2015).
Poli, N. et al. A transportable strontium optical lattice clock. Appl. Phys. B 117, 1107–1116 (2014).
Yasuda, M. et al. Laser-controlled cold ytterbium atom source for transportable optical clocks. J. Phys. Soc. Jpn. 86, 125001 (2017).
Grotti, J. et al. Geodesy and metrology with a transportable optical clock. Nat. Phys. 14, 437–441 (2018).
Takamoto, M. et al. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photon. 14, 411–415 (2020).
Chu, S., Hollberg, L., Bjorkholm, J. E., Cable, A. & Ashkin, A. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett. 55, 48 (1985).
Chu, S., Bjorkholm, J., Ashkin, A. & Cable, A. Experimental observation of optically trapped atoms. Phys. Rev. Lett. 57, 314 (1986).
Kim, J. et al. Buffer-gas loading and magnetic trapping of atomic europium. Phys. Rev. Lett. 78, 3665 (1997).
Hemmerling, B., Drayna, G. K., Chae, E., Ravi, A. & Doyle, J. M. Buffer gas loaded magneto-optical traps for Yb, Tm, Er and Ho. New J. Phys. 16, 063070 (2014).
Leibrandt, D. R. et al. Laser ablation loading of a surface-electrode ion trap. Phys. Rev. A 76, 055403 (2007).
Zimmermann, K., Okhapkin, M. V., Herrera-Sancho, O. A. & Peik, E. Laser ablation loading of a radiofrequency ion trap. Appl. Phys. B 107, 883–889 (2012).
Olmschenk, S. & Becker, P. Laser ablation production of Ba, Ca, Dy, Er, La, Lu, and Yb ions. Appl. Phys. B 123, 99 (2017).
Vrijsen, G., Aikyo, Y., Spivey, R. F., Inlek, I. V. & Kim, J. Efficient isotope-selective pulsed laser ablation loading of 174Yb(^+) ions in a surface electrode trap. Opt. Express 27, 33907–33914 (2019).
Osada, A. & Noguchi, A. Deterministic loading of a single strontium ion into a surface electrode trap using pulsed laser ablation. arXiv preprint arXiv:2109.04965 (2021).
Tarallo, M. G., Iwata, G. Z. & Zelevinsky, T. Bah molecular spectroscopy with relevance to laser cooling. Phys. Rev. A 93, 032509 (2016).
Baum, L. et al. 1D magneto-optical trap of polyatomic molecules. Phys. Rev. Lett. 124, 133201 (2020).
Mitra, D. et al. Direct laser cooling of a symmetric top molecule. Science 369, 1366–1369 (2020).
Kock, O. et al. Laser controlled atom source for optical clocks. Sci. Rep. 6, 1–6 (2016).
Chichkov, B. N., Momma, C., Nolte, S., von Alvensleben, F. & Tünnermann, A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109–115 (1996).
Lamporesi, G., Donadello, S., Serafini, S. & Ferrari, G. Compact high-flux source of cold sodium atoms. Rev. Sci. Instrum. 84, 063102 (2013).
Cheiney, P. et al. Zeeman slowers made simple with permanent magnets in a Halbach configuration. arXiv preprint arXiv:1101.3243 (2011).
Saffman, M. Quantum computing with atomic qubits and Rydberg interactions: Progress and challenges. J. Phys. B At. Mol. Opt. Phys. 49, 202001 (2016).
Cohen, S. R. & Thompson, J. D. Quantum computing with circular Rydberg atoms. arXiv preprint arXiv:2103.12744 (2021).
Young, A. W. et al. Half-minute-scale atomic coherence and high relative stability in a tweezer clock. Nature 588, 408–413 (2020).
https://www.nature.com/articles/s41598-021-04697-4